A Non-Stationary 1981-2012 AVHRR NDVI3g Time Series

نویسندگان

  • Jorge E. Pinzón
  • Compton J. Tucker
چکیده

The NDVI3g time series is an improved 8-km normalized difference vegetation index (NDVI) data set produced from Advanced Very High Resolution Radiometer (AVHRR) instruments that extends from 1981 to the present. The AVHRR instruments have flown or are flying on fourteen polar-orbiting meteorological satellites operated by the National Oceanic and Atmospheric Administration (NOAA) and are currently flying on two European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar-orbiting meteorological satellites, MetOp-A and MetOp-B. This long AVHRR record is comprised of data from two different sensors: the AVHRR/2 instrument that spans July 1981 to November 2000 and the AVHRR/3 instrument that continues these measurements from November 2000 to the present. The main difficulty in processing AVHRR NDVI data is to properly deal with limitations of the AVHRR instruments. Complicating among-instrument AVHRR inter-calibration of channels one and two is the dual gain introduced in late 2000 on the AVHRR/3 instruments for both these channels. We have processed NDVI data derived from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) from 1997 to 2010 to overcome among-instrument AVHRR calibration difficulties. We use Bayesian methods with high quality well-calibrated SeaWiFS NDVI data for deriving AVHRR NDVI calibration parameters. Evaluation of the uncertainties of our resulting NDVI values gives an error of ± 0.005 NDVI units for our 1981 to present data set that is independent of time within our AVHRR NDVI continuum and has resulted in a non-stationary climate data set. OPEN ACCESS Remote Sens. 2014, 6 6930

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing Performance of NDVI and NDVI3g in Monitoring Leaf Unfolding Dates of the Deciduous Broadleaf Forest in Northern China

Using estimated leaf unfolding data and two types of Normalized Difference Vegetation Index (NDVI and NDVI3g) data generated from the Advanced Very High Resolution Radiometer (AVHRR) in the deciduous broadleaf forest of northern China during 1986 to 2006, we analyzed spatial, temporal and spatiotemporal relationships and differences between ground-based growing season beginning (BGS) and NDVI (...

متن کامل

A Comparative Analysis between GIMSS NDVIg and NDVI3g for Monitoring Vegetation Activity Change in the Northern Hemisphere during 1982-2008

The long-term Normalized Difference Vegetation Index (NDVI) time-series data set generated from the Advanced Very High Resolution Radiometers (AVHRR) has been widely used to monitor vegetation activity change. The third version of NDVI (NDVI3g) produced by the Global Inventory Modeling and Mapping Studies (GIMMS) group was released recently. The comparisons between the new and old versions shou...

متن کامل

Thirty-two Years of Sahelian Zone Growing Season Non-Stationary NDVI3g Patterns and Trends

We update the Global Inventory Modeling and Mapping Studies (GIMMS) analysis of Sahelian vegetation dynamics and trends using the normalized difference vegetation index (NDVI; version 3g) 1981 to 2012 data set. We compare the annual NDIV3g and July to October growing season averages with the three rainfall data sets: the Africa Rainfall Climatology from 1983 to 2012, the Variability Analyses of...

متن کامل

A new adaptive exponential smoothing method for non-stationary time series with level shifts

Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...

متن کامل

Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data

[1] In this paper, we present an approach for generating a consistent long-term global leaf area index (LAI) product (1981–2011) by quantitative fusion of Moderate Resolution Imaging Spectroradiometer (MODIS) and historical Advanced Very High Resolution Radiometer (AVHRR) data. First, a MODIS LAI series was generated from MODIS data based on the GLOBCARBON LAI algorithm. Then, the relationships...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014